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Abstract We describe a preliminary experiment to track the emotions of actors and 
audience in a theater play through machine learning and AI. During a forty-minute 
play in Zurich, eight actors were equipped with body sensing smartwatches. At the 
same time, the emotions of the audience were tracked anonymously using facial 
emotion tracking. In parallel, also the emotions in the voices of the actors were 
assessed through automatic voice emotion tracking. This paper demonstrates a first 
fully automated and privacy-respecting system to measure both audience and actor 
satisfaction during a public performance. 

 

1. Introduction  

Emotion recognition has been widely studied for many years. Human emotion is a 
crucial element for communication and decision-making. The availability of 
emotion-rich data sources on many channels, along with recent advances in machine 
learning and deep learning have led to the development of various intelligent 
systems that are able to automatically recognize and interpret human emotions. In 
businesses for example, online retail systems are capable of analyzing emotional 
customer feedback to improve customer satisfaction (Hong, Zheng, Wu, & Pu, 
2019). In healthcare, the physical and emotional states of patients are monitored to 
automatically diagnose and prescribe the appropriate treatment (Chen, Zhang, Qiu, 
Guizani, & Hao, 2018). Another application of emotion recognition is for safe 
driving through online monitoring of driver emotions (Vasey, Ko, & Jeon, 2018). 
 
Traditionally, emotion recognition research has been focused on analyzing 
unimodal data: speech signals (Swain, Routray, & Kabisatpathy, 2018), text data 
(Yadollahi, Shahraki, & Zaiane, 2017), facial expressions (Ko, 2018), and most 
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recently, physiological signals (Ali, Mosa, Machot, & Kyamakya, 2018). However, 
emotions are complex cognitive processes with rich features that are difficult to 
infer with just a single modality (Qiu, Liu, & Lu, 2018). Consequently, a number of 
studies have investigated the use of multimodal data and have shown that it can 
substantially improve the prediction of emotional states (Ullah, Islam, Azman, & 
Zaki, 2017). Moreover, the concept of cross-modal prediction in which shared 
representations are learned from multiple modalities to predict emotion from one 
modality to another has recently received growing interest from the research 
community. 
 
One of the most widely known challenges in the field of emotion recognition is the 
difficulty of obtaining and labelling datasets to train prediction models. Cross-
modal prediction addresses this problem by learning embeddings from one modality 
to predict another. For example, Albanie and colleagues (Albanie, Nagrani, 
Vedaldi, & Zisserman, 2018) investigated the task of learning speech embeddings 
without access to any form of labelled audio data by exploiting a pre-trained face 
emotion recognition network, to reduce the dependence on labelled speech. 
Similarly, Li et. al (Li, Zhu, Tedrake, & Torralba, 2019) proposed a cross-modal 
prediction system between vision and touch that is capable of learning to see by 
touching, and  learning to feel by seeing. Inter-modality dynamics, which models 
the interactions between different modalities and how they affect the expressed 
emotions of an individual, have also been investigated in earlier work (Zadeh, Chen, 
Poria, Cambria, & Morency, 2018). The majority of these studies on using 
multimodal data, however, have been focused on recognizing emotions of a single 
individual, and little research has explored such inter-modality interactions between 
a group of individuals.  
 
Motivated by these advances in multimodal emotion recognition, we investigate the 
correlations between the emotions depicted from facial expressions, speech, and 
physiological signals between two separate groups of individuals. In particular, we 
monitor the interaction between actors and audience in a theatre performance. The 
contributions of this paper are as follows: We trained a face emotion recognition 
(FER) model and a speech emotion recognition (SER) model that are capable of 
predicting emotions from facial expressions and speech signals, respectively. We 
collected visual, audio, and physiological data from actors and audience of a theatre 
performance which took place at the Landesmuseum in Zurich, Switzerland in 
spring of 2019. To the best of our knowledge, no such dataset has been collected 
before. We finally investigated the correlations between the emotions predicted by 
our deep learning models from the facial expressions, speech, and physiological 
signals that we have collected.  Specifically, we analyzed the emotions of actors 
from their speech and physiological signals, and how these emotions translate to the 
facial expressions of the audience, investigating inter-modal and inter-personal 
dynamics.  
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2. Theoretical Background 

Psychologists have proposed several theories categorizing different emotions that 
also account for age and cultural differences. One of the most widely applied 
emotion categorization frameworks is Paul Ekman’s emotion model (Ekman & 
Friesen, 1971) where he classifies emotions into six basic categories: anger, 
happiness, fear, surprise, disgust, and sadness. Another universally recognized 
emotion classification system is the Circumplex model of affect (Posner, Russell, 
& Peterson, 2005), which is a two-dimensional model with valence describing the 
range of negative and positive emotions, and arousal depicting the active to passive 
scale of emotions. High valence and high arousal for example, represent a pleasant 
feeling with high activation, which describes emotions such as happiness and 
excitement. 
 
These emotions can be expressed in several ways: through facial expressions, 
speech, text, body language, or physiological signals. Among these modalities, 
facial expression is believed to be one of the most powerful and direct channels to 
convey human emotions in non-verbal communication (Ambady & Weisbuch, 
2010; Rule & Ambady, 2010) while speech, on the other hand, is one of the most 
natural channels to transmit emotions in verbal interactions. These modalities differ 
in their potential in predicting emotional states as well as in their availability and 
usability under various circumstances (Egger, Ley, & Hanke, 2019). Moreover, one 
modality can be influential in the recognition of another, which has been 
investigated in prior studies in cross-modal prediction (Albanie et al., 2018; Li et 
al., 2019). This can be useful in applications where one modality is utilized when 
the other is absent, such as in generating captions or labels for images (Karpathy & 
Li, 2014) or in using vision to predict sounds (Owens et al., 2015).   
 
Various methods have been proposed for recognizing emotions from faces, speech, 
and physiological signals. In face emotion recognition (FER), the current dominant 
technique are deep neural networks (DNNs) such as Convolutional Neural 
Networks (CNNs), which have been extensively used in diverse computer vision 
tasks that have resulted in several well-known CNN architectures such as AlexNet 
(Krizhevsky, Sutskever, & Hinton, 2012), VGG (Simonyan & Zisserman, 2014), 
VFF-face (Parkhi, Vedaldi, & Zisserman, 2015), and GoogleNet (Szegedy et al., 
2014).  Similarly, in speech emotion recognition (SER), the recent breakthroughs 
in deep learning have led to the design of numerous DNN architectures such as 
variants of CNNs and Long-Short Term Memory (LSTM) networks, that have 
shown state-of-the art performance in SER (Lee & Tashev, 2015; Trigeorgis et al., 
2016). In emotion recognition from physiological signals however, the majority of 
prior studies use classical algorithms such as Support Vector Machines (SVM), 
Random Forests (RF), Linear Discriminant Analysis (LDA), and K-nearest 
neighbors (KNN) (Ali et al., 2018). Deep learning in this domain is still in its 
infancy, possibly due to the lack of large physiological emotion-labeled datasets 
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necessary for training deep networks, contrary to FER where a substantial number 
of large datasets exist. 
 
The aforementioned methods traditionally have only dealt with unimodal data, but 
have also become popular in multimodal emotion recognition, in which the 
detection of emotion in each modality is a critical component for the success of the 
entire multimodal system. One of the key challenges in multimodal emotion 
recognition is to model the interactions between each modality (i.e. inter-modality 
dynamics) (Marechal et al., 2019). While novel approaches (Zadeh et al., 2018) 
have been proposed to address this problem, a majority of the earlier work has been 
focused on the inter-modality dynamics within a single individual. In psychology, 
numerous studies (Parkinson, 2014; Smith, Alkozei, & Killgore, 2017) affirm that 
clearly another person’s emotions do have an effect on our own actions,  thoughts, 
and feelings. For instance, Paul Ekman (Ekman, Freisen, & Ancoli, 1980) highlights 
how one person’s face may influence the emotional experience of another: “If B 
perceives A’s facial expression of emotion, B’s behavior toward A may change, and 
A’s notice of this may influence or determine A’s experience of emotion” (Ekman 
et al., 1980). In the field of multimodal emotion recognition on the other hand, little 
research has been done to explore the inter-modality dynamics between individuals 
(i.e. inter-personal). This research aims to further understand such inter-modality 
and inter-personal effects. Through an empirical study, we investigate the 
correlations between emotions extracted from the speech and physiological signals 
of a group of individuals, and the emotions from the facial expressions of another 
group.  

3. Methodology 

3.1 Data Collection 

We collected physiological, visual, and audio data from both actors and audience 
during a theatre performance that took place in the Landesmuseum in Zurich, 
Switzerland on May 25th, 2019. Through the Happimeter app (Budner, Eirich, & 
Gloor, 2017) running on the smartwatch that the actors wore during the 
performance, we were able to gather the activation, pleasance, and stress levels of 
the actors. The Happimeter runs a trained machine learning model that is capable of 
predicting such emotions from the physiological signals that are collected from the 
sensors of the smartwatch. Through a video camera that was set-up inside the 
theatre, we captured the faces of the audience and the voices of the actors during 
the entire performance which lasted for about 40 minutes.  
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Considering the number of smartwatches available as well as the privacy issues 
imposed by the collection of sensor data, we opted to collect the physiological 
signals from the smaller group of individuals - the actors, which consisted of 8 
individuals. Moreover, as a theatre etiquette, loud whispers and conversations in the 
audience are discouraged, hence, speech data was only collected from the actors. 
Facial expressions on the other hand, were recorded from the audience, which 
consisted of about 40 people. Table 1 summarizes the data collected during the 
theatre performance. 
 

Table 1. Summary of the collected data from the theatre performance 
Modality Emotions Group 

Facial expressions Anger, Fear, Happiness, Sadness Audience 
Physiological signals Activation, Pleasance, Stress Actors 
Speech signals Anger, Fear, Happiness, Sadness Actors 

3.2 Model Implementation 

3.2.1 Face Emotion Recognition 

Our FER model, which has a prediction accuracy of 74.9%, has been trained on a 
combination of multiple datasets: CK+ (Lucey et al., 2010), JAFFE (Lyons, 
Kamachi, & Gyoba, 1998), BU-3DFE (Yin, Wei, Sun, Wang, & Rosato, 2006), and 
FacesDB (Mena-Chalco, Marcondes, & Velho, 2008). The cardinality of each 
emotion type in these datasets is summarized in Table 2. Our model uses a VGG16 
(Simonyan & Zisserman, 2014) CNN architecture that was pre-trained on 
ImageNet. We freeze the layers except for the last 4 layers of this pre-trained model. 
We use SGD as an optimizer with a learning rate of 0.01 and a Softmax activation 
function in the dense output layer of the network. All of the detected faces from the 
camera were resized to 100 x 100 as input to the VGG16 model. Since VGG16 
expects three input channels, we extend the images into three dimensions by using 
the same values for red, green, and blue (i.e. grayscale). 

Table 2. FER Training Set 
 Dataset  

Emotions CK+ JAFFE BU-3DFE FacesDB Total 
Happy 69 31 77 36 213 

Sad 28 31 88 36 183 
Angry 45 30 94 35 204 
Fearful 25 32 92 36 185 
Total 167 124 351 143 785 

 
Using the face_recognition python package which is based on the dlib machine 
learning library (King, 2009), we detect the faces from the captured images on the 
camera. We then label all the recognized faces with the emotions happy, angry, sad, 
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and fearful, using our trained FER model. The probabilities of the emotion classes 
are obtained from the Softmax layer of our FER network. Fig. 1 illustrates a 
snapshot of the video captured by the camera, showing the emotion-labeled faces 
as predicted by our FER model.  
 

 
Fig. 1. Emotion-labeled faces detected by our FER Model (face blurred for privacy 

reasons) 

3.2.2 Speech Emotion Recognition 

Our SER model, which has a prediction accuracy of 71.01%, has been trained on a 
combination of multiple datasets containing 3-5 seconds of emotion-labeled audio 
files: RAVDESS (Livingstone & Russo, 2018), SAVEE (Jackson & ul haq, 2011), 
CREMA-D (Cao et al., 2014), IEMOCAP (Busso et al., 2008), TESS (Dupuis & 
Pichora-Fuller, 2011), and EMODB (Burkhardt, Paeschke, Rolfes, Sendlmeier, & 
Weiss, 2005). The cardinality of each emotion type in these datasets is summarized 
in Table 3. Using python’s Librosa (McFee et al., 2015) library, we extract the 
MFCCs (Mel-frequency cepstral coefficients) from each audio file with a sampling 
rate of 44100 Hz, a Fast Fourier Transform (FFT) window of 2048, and hop length 
of 512 samples. This implementation uses the Hann window function on the signal 
frames and performs a Short-Time Fourier-Transform (STFT) to calculate the 
frequency spectrum. We extract a total of 40 MFCCs, excluding the zeroth 
coefficient as it represents the average log-energy of the signal, which carries 
limited speech information (Nandi & Rao, 2015). We then feed this MFCC feature 
vector into our LSTM: a five-layer network with one input layer, 3 hidden layers, 
and one dense output layer with a Softmax activation function. 
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Table 3. SER Training Set 
 Dataset  

Emotions RAVDESS SAVEE CREMA-D IEMOCAP TESS EMODB Total 
Happy 376 60 1271 595 400 72 2774 

Sad 376 60 1271 1084 400 62 3253 
Angry 376 60 1271 1103 399 128 3337 
Fearful 376 60 1271 40 399 68 2214 
Total 1504 240 5084 2822 1598 330 11578 

 
Using the video captured by the camera, we extract the corresponding audio data by 
converting the mp4 into a wav file format. The entire audio stream was split, with a 
chunk length of 4 seconds, since our SER prediction model was trained on audio 
data with a similar average time duration. We then label each of the 4-second audio 
with the emotions happy, angry, sad, and fearful, using our trained SER model. The 
probabilities of the emotion classes are obtained from the Softmax layer of our SER 
network. 
 
3.2.3 Physiological Emotion Recognition 

We use the machine learning model that is deployed in the Happimeter (Budner et 
al., 2017) app to label the emotions from the physiological signals, i.e. a 
Physiological Emotion Recognition (PER). Signals were collected by the sensors of 
the smartwatch. The model processes physiological (e.g. movement, heart rate, etc.) 
and environmental (noise, weather, etc.) variables as inputs to a classifier. It uses 
Scikit-learn’s (Pedregosa et al., 2011) Gradient Boosting algorithm with a learning 
rate of 0.1 and a maximum depth of 8 nodes in each tree. This machine learning 
model, which currently has a prediction accuracy of 79%, has been trained with the 
data that has been acquired from the users of the app from the past three years. Using 
this trained model, the data collected from the smartwatches that were worn by the 
actors, were labeled with values ranging from 0 to 2 to indicate the levels of 
activation, pleasance, and stress.  
 
3.2.4 Correlation Analysis 

We compare the predicted emotions from the voices and physiological signals of 
the actors to the emotions from the facial expressions of the people in the audience. 
We merge the predictions from our SER (actors) and FER (audience) models based 
on the closest timestamp and perform a rolling window calculation (i.e. simple 
moving average) using different time windows to filter out noise and expose the 
underlying properties of the curves. Subsequently, we perform a correlation analysis 
using Pearson’s Correlation Coefficient (see Equation below), where 𝑛 is the 
sample size, 𝑥# and 𝑦# are the individual sample points 𝑖, and �̅� and 𝑦' are the sample 
mean. The same process is followed to compare the emotions from the PER (actors) 
and the FER (audience) model. We also analyze the physiological signals (i.e. 
heartrate and movement) from the actors and examine their correlations with the 
emotions portrayed from the faces of the audience. 
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𝑟)* = 	
∑ (𝑥# − �̅�)	(𝑦# − 𝑦')1
#23

4∑ (𝑥# − �̅�)51
#23 	4∑ (𝑦# − 𝑦')51

#23
 

 

4. Results  

4.1 PER vs FER 

Fig. 2 shows the levels of activation, pleasance, and stress of the actors (as measured 
by the Happimeter app) and the four emotions of the audience (as measured by the 
FER model) throughout the entire theatre performance. As we can see, the pleasance 
of the actors went down as the play progressed, while their activation went up. The 
correlation values and the level of significance between these emotions are 
illustrated in Fig. 3 (* <0.05, ** <0.01, *** <0.001). 

 

 
Fig. 2. Emotions from the Happimeter and the FER model 
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Fig. 3. Correlations between the emotions from the Happimeter (actors, about 900 
measurements) and the FER model (audience, about 600 measurements) 

 
We find that activation of the actors and anger of the audience is negatively 

correlated (r=-0.31*). This means that the more excited the actors are, the less angry 
the audience is. We do not really assume that the audience is “angry”, rather their 
facial expressions showed something that our FER interpreted as “angry”. As we 
only had these four emotions labeled this initial analysis, other emotions such as 
“surprise” or “insight” might be subsumed into the “angry” emotion, as the FER 
system might assign these emotions also the “angry” label. Similarly, we find that 
the higher the pleasance of the actors is, the less “fearful” the audience is (r=-0.32*). 
Somewhat counterintuitively we also find that the higher the pleasance of the actors 
is, the more angry the audience (r=0.39**) is. This combination of correlations 
indeed suggests that the “surprise” facial expression might be similar to the “anger” 
facial expression and has been recognized as such by the FER. 

 
4.2 Sensor data vs FER 

In order to investigate the possible correlations between raw sensor data (as captured 
by the smartwatch) and the FER model, we collected and analyzed the data from the 

smartwatches worn by the actors. Fig. 4. shows the average levels of movement (computed 
as the sum of the absolute values of accelerometers value along x, y and z-axis), heartrate 
(beats per minute, BPM), and noise level (as measured by microphone). The correlation 
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values and the level of significance between these emotions are illustrated in 

 

Fig. 5.  

 
Fig. 4. Sensor data (average) comparison with the FER model 
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As  

Fig. 5 shows, the facial expression recognized as “angry” is negatively correlated 
to the average movement, i.e. the less the actors move, the more “angry” the 
audience gets. 
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Fig. 5. Correlations between sensor data (average, about 2150 measurements) and the 
FER model 

Similarly, we find, that the higher the standard deviation in movement of the 
actors, the “angrier” expressions (r=0.32*) and the less “fear” expressions (r=-
0.34*) are recognized by the FER. This means that differences in movement 
among the actors trigger emotional reactions by the audience. 
  

 
4.3 FER vs SER 

Fig. 6 shows the plots of the probabilities of the emotion “anger” as measured by 
our FER and SER models using a rolling time window of 30 seconds, one minute, 
and five minutes. As foreseen, a smoother curve is achieved with a longer time 
window. In Fig. 7 the plots of the probabilities of all four emotions between the 
actors (as predicted by the SER) and the audience (as predicted by the FER) with a 
rolling window of one minute are displayed. The corresponding correlation matrix 
showing the correlation values and the level of significance is displayed in Fig. 8. 
Only significant correlations between the emotions of the audience and actors (i.e. 
FER vs SER predictions) are highlighted. 
 

 
Fig. 6. Plot of the probabilities of the emotion anger from the FER and SER models using 

different time windows 
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As the correlation matrix in Fig. 8 shows, “fear” in the faces of the audience is 
positively correlated with “anger” in the voice of the actors. “Anger” in the faces of 
the audience is positively correlated with “happiness” in the voice of the actor, 
which again suggested that “surprise” of the audience is also subsumed in this 
emotion. 

Fig. 7. Plot of the probabilities of the four emotions from the FER and SER models using 
a rolling window of one minute 
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Fig. 8. Correlation matrix between the emotions from the FER (N= 592) and SER (N= 

684) models 

5 Discussion 

5.1  Emotions from Faces of the Audience vs Voices of Actors 

By taking into consideration a balance between filtering random noise or variations 
and preserving the original data, we chose a time window of one minute to smoothen 
the time series predictions as can be observed from the plots in Fig. 6. Using this 
chosen time window, we see some obvious correlations between the emotions from 
the audience and the actors (see Fig. 8). A graphical summary of the correlations 
are shown in Fig. 9, which is based on the correlation matrix in Fig. 8. 
 
For the emotion “anger”, there is a statistically significant negative correlation 
between the audience and the actors. Interestingly, there is a statistically significant 
positive correlation between the “happiness” from the actors and “anger” from the 
audience. This implies that when there is “anger” from the actors, the audience feels 
less of the same emotion and similarly, when there is “happiness” from the actors, 
there is a higher intensity of “anger” from the audience. 
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The “anger” expressed by the voices of the actors is positively correlated with “fear” 
from the audience, which appear to be logical and can possibly infer that the actors 
can effectively elicit “fear” from the audience by demonstrating “anger” in their 
voices. Consistent with such behavior, there is also a statistically significant 
negative correlation between the “happiness” from the actors and “fear” from the 
audience, implying that the audience feels less “fear” when the actors exhibit 
“happiness”.  
 
A statistically significant positive correlation is also present between “fear” from 
the actors and “sadness” from the audience. This may suggest that members of the 
audience are sympathetic, and they empathize with the “fear” from the actors by 
feeling “sad”. Consistent with such observation, there is also a statistically 
significant negative correlation between “happiness” from the actors and “sadness” 
from the audience, which suggests that the actors effectively managed to make the 
audience feel less “sad” by showing “happiness” through their voices. 
 

 
Fig. 9. Significant correlations between the actors and the audience based on 
the FER and SER correlation matrix 

5.2  Emotions from Happimeter vs Faces of the Audience 

Based on the same considerations as discussed in 5.1, we chose a time window of 
three minutes to smoothen the time series predictions of Happimeter and FER as 
shown in the plots in Figure 6. In this plot, the actors’ emotions “pleasance” and 
“activation” are compared with the audience’s “angry”, “fear”, “sad” and “happy” 
facial expressions. 
 
We find that the variable “angry” is negatively correlated to the “activation” of 
Happimeter and positively correlated to “pleasance”. This seems to suggest that the 
angry emotion is covering another emotion (maybe “surprise”) as it leads the 
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audience to be more agitated. As expected, the audience variable “fear” is 
negatively correlated to the actors’ “pleasance”. 

 
5.3  Actors’ Sensor Data vs Faces of the Audience 

We find that an increase of the average “movement” of the actors leads to a decrease 
of “angry” emotions among the audience, in accordance with the discussion in 5.2, 
but also to an increase of the “fear” emotion. Moreover, an increase of the average 
sound level measured with the microphone is positively correlated to the “sadness” 
of the audience. We assume that this is directly related to the theater piece which 
was played in this analysis, where tragic experiences of the protagonist are 
presented. 
 
We also observed that an increase in the variance of movements leads to an increase 
in the anger of the audience, while decreasing their fear. This might be related to 
one actress walking among the audience, triggering some anger and fear of 
spectators of being called out. 
 
A graphical summary of the correlations discussed in 5.2 and 5.3 are shown in Fig. 
10, which is based on the correlation matrices in Fig. 8 and Fig. 5. 
  

 

Fig. 10. Significant correlations between the actors and the audience based on the 
PER vs FER and Sensor data vs FER correlation matrices. 
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6 Conclusions and Future Work 

One of the main restrictions of the analysis described in this paper is that the FER 
we used only is capable of recognizing the four emotions happy, sad, fear, and 
anger, potentially leading to overrecognition of fear and anger. In the revised 
version of the FER which has been developed in the meantime, we have included 
the two additional emotions of the Ekman model surprise and disgust, which in 
more recent work have shown increased recognition accuracy and emotion 
coverage. 

Nevertheless, we are convinced that the system described in this paper has 
illustrated the potential of our approach of automatically measuring audience and 
artist emotions at public events. We are currently extending our system for using it 
at other artistic events such as concerts and other public events. In particular this 
includes giving immediate feedback to participants about their emotions, and 
combining sound input from other sources such as smartphones with the 
Happimeter and the video input from the Webcam. Our ultimate goal will be to 
identify the emotions that will lead to optimal experiences for both performers and 
the audience. Mirroring back this behavior (Gloor et al. 2017) to performers will 
allow them to better understand the impact their own emotions have on their 
audience, and thus to improve their artistic performance and skills. 
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